
New Approach of Scheduling Algorithms in Linux
Operating System with Goodness Function

G.Keerthi Dr.R.China Appala Naidu
Assistant Professor Professor

Dept of IT Dept of CSE
St. Martin’s Engineering College St. Martin’s Engineering College

Hyderabad. Hyderabad.

Abstract: Now a day’s most of the people are using scheduling
algorithms in most of the resources where in this paper we are
highlighting the concept of process scheduling used in Linux
operating system , with the use of goodness function . This
function is used to reduce the CPU time scheduling and effects
and also find the task with relative desirability. Comparative
to the other scheduling algorithms goodness function works
well in all circumstances like giving IO-bound processes with
a good response and efficiently. It took less time with good
response, the same we explained and shown in this paper.

Key terms: Scheduling, Process scheduling algorithms,
priorities, goodness

INTRODUCTION:
The first ever Linux process scheduler that came with
kernel version 0.01 in 1991 used minimal design.
Scheduling is the process in which the assigned work has to
be completed with in a specified time with the given
resources. Resources can be Hardware, Software and
Networking such as processors, network links or expansion
cards Scheduling is nothing but it carries out the scheduling
activities.
The main goal of scheduling is to reach the target with the
quality of services. It also implements to keep all computer
resources busy which allow multiple users to share system
resources effectively. Scheduling is the fundamental
concept of computation and it is intrinsic part of execution
model of computer system. The final execution model
should be capable of performing multi tasking by using
single central processing unit(CPU).
The main advantage of scheduling algorithm is to reduce
starvation and to help in ensuring the fairness among the
utilizing resources.

PROCESS SCHEDULING :
The main definition of process scheduling is nothing but
it is which handles the removal of running process from
the CPU and the selection is based on particular strategy
of the process.
Process scheduling is an important part of a
Multiprogramming operating system where more than one
process is loaded into the memory at a time and the loaded
process shares the CPU by using time multiplexing.
Process scheduling algorithms are basically two in linux:
1.A time-sharing algorithm – It makes uses of scheduling
between multiple processes
2.A real-time algorithm – Finishing the task by using
priorities with absolute fairness

 For time-sharing processes, Linux uses a credit based
algorithm. In this credit based rule it has following
Credits= credits/2 + priority
Time sharing process basically takes two factors into
consideration i.e one processes and another priority.

 Linux implements process scheduling like FIFO and
round-robin real-time scheduling that make use of
priority and scheduling class.
FIFO: Priorities are basically classified as highest,
smallest and equal priority. Highest priority are the one
which take additional time then the smallest and equal
priority will be completed in estimated time without
considering which type of priority it is. FIFO will
continue the process until they either exit or block the
process.
Priorities:
1. Static priority

It allow maximum size of the time slice for a
process before it has being forced by other
processes to compete for the CPU.

2. Dynamic priority
As long as the process has the CPU, the amount of
time remaining in this time slice declines with
time of process. The process is marked for
rescheduling when its dynamic priority falls to
zero.

3. Real-time priority
Priorities with real time values will be executed.
Higher real-time values always beat lower values

Scheduling :
 Need_resched field of prev is set to zero.
 Schedule() assign a new quantum to prev and places it

at the bottom of run queue list.
 If the process state is TASK_INTERUPTIBLE then

the function wakes up the process.
 Schedule() invokes goodness() function so as to

identify best candidate that is runnable process.

The Linux scheduler is a priority based scheduler where
scheduling task is based upon the static and dynamic
priorities. When all these priorities are combined together
they form a task's goodness() function . Every time where
the Linux scheduler runs their each task on the run queue is
examined and their goodness value is computed. The task
which is having the highest goodness() function is chosen
to run next.

G.Keerthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4660-4662

www.ijcsit.com 4660

goodness() function
 It identify the best process among all other processes

in the run queue list.
 Goodness() function receives as input parameters

prev and p , where prev means descriptor of previous
running process, p means the descriptor pointer of the
process which is evaluated.

 The integer value c returned by goodness()function
measures the "goodness" of p which has the following
meanings:
 c = -1000,where p must never be selected; this

value is returns the run queue list if it contains
only init_task

 c =0,then p has exhausted its quantum, if not p is
the first process in the run queue list and all the
runnable process have also exhausted their
quantum, it will not be selected for execution.

 0 < c < 1000,then p is conventional process that
has not exhausted its quantum which means the
higher value of c is denoted to a higher level of
goodness function.

 c >= 1000,where p is a real-time process means it
is a higher value of c denotes a higher level of
goodness.

Linux scheduler behavior has two paths involved in it they
are

1. schedule – schedule means running or current task
is SCHED_OTHER task that expires the time
slice.

2. reschedule_idle – reschedule idle means
wakeuping the task with the best CPU by invoking
a schedule on it.

Both paths shares the goodness () function which consider
the core of the SMP scheduler time. It calculates the
goodness function on the following bases, they are

 the task which is currently running
 the task that wants to run
 e current CPU

rep_sch:
 next=idle_tsk(this_cpu);
c=-1000;
list_entry (tmp, &runqueue_head)
{
 p=list_entry(tmp, struck tsk_struct, run_list);
 If(can_sch(p,this_cpu))
 {
 int wt = goodness(p,this_cpu,prev->active_mm);
 if(wt>c)
 c=wt, next=p;
 }
}

Based on goodness function only plain scheduling works. It
is SMP – aware. Goodness potential increments last CPU
task and changes it to current CPU task.

The main objective of reschedule_idel is wakenup the
previous task and to call the schedule on to the CPU.. We
use goodness in reschedule_idle because of predicting the
effect of the future schedule that will send to that CPU. By
predicting the effect of the future schedule, we can select
the best CPU to reschedule at wakeup time. This, of course,
saves us the trouble of executing on a CPU. If the CPU to
reschedule is not the current then reschedule event via
inter-CPU message passing.

In Linux scheduler , goodness function is the core part and
it is also SMP aware, while reschedule_idle is the core of
the clever SMP heuristics.

Features of reschedule_idle:

1. It makes use of goodness function.
2. Goodness function decides which process is

desirable.
3. It finds about interdependent processes.
4. It also finds about CPU time and TLB miss

penalities.
static int goodness(struct task_struct * p, int this_cpu,
struct mm_struct *this_mm)
{
 int wt;
 /*
 * Realtime process, select the first one on the
 * runqueue (taking priorities within processes
 * into account).
 */
 if (p->policy != SCHED_OTHER)
 {
 wt = 1000 + p->rt_priority;
 goto out;
 }
 /*
 * It gives the process a first-appropriate goodness value
 .
 *
 * It should not do any other calculations if the time slice
is
 * over..
 */
 wt = p->counter;
 if (!wt)
 goto out;

#ifdef __SMP__
 /*Same process will be having largish advantage... */
 /* (this is equivalent to penalizing other processors) */
 if (p->processor == this_cpu)
 wt += PROC_CHANGE_PENALTY;
#endif
 if (p->mm == this_mm)
 wt += 1;
 wt += p->priority;
out:
 return wt;
}

G.Keerthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4660-4662

www.ijcsit.com 4661

Factors that makes goodness() function as important
concept in linux are:

1. It is easy to find the task with related desirability.
2. Its calculation depends upon processor affinity.

The significant advantage is given to the last
processor which is running on the schedule
because of existing possibility which have some
memory lines in that processors cache.

3. Its calculation also depends upon its memory map
address. If a task shares the same address space,
then the task’s goodness value is increased by one
because of the reduced context switch fixed cost
which is involved.

4. The effect of calculation is based on task counter
value and its priority.

5. The task priority plays a major role in it.

CONCLUSION:
Process scheduling has always been the corner stone in
operating systems’ development. So the current Linux
scheduling has grown large with all these Scheduling
algorithms which we have been tried to explore in this
paper with the effectiveness of goodness function, with this
goodness function we proved it is better than the previous
scheduling functions. As this function took less time to
calculate with accurate result.

REFERENCES:

1. Ankita Garg, ”Real-Time Linux Kernel Scheduler”, Linux Journal,
PP 0-4, Aug 2009.

2. https://en.wikipedia.org/wiki/Scheduling
3. http://www.linuxjournal.com/article/3910?page=0,0
4. Sivarama P. Dandamudi and Samir Ayachi. “Performance of

hierarchical processor scheduling in shared-memory multiprocessor
systems". IEEE Transactions on Computers, Vol 48 issue 11
PP1202–1213, 1999.

5. S. Haldar and D. K. Subramanian. ”Fairness in processor scheduling
in time sharing systems”. Operating Systems Review, Vol 25. Issue
1 PP 4–18, 1991.

6. Daniel P. Bovet & Marco Cesati, "Chapter 10, Processing
Scheduling, Understanding the Linux Kernel," 2000.

7. Daniel P. Bovet and Marco Cesati, Understanding the Linux
Kernel, Third Edition. O'Reilly Media, 2005.

8. Thang Minh Le , A STUDY ON LINUX KERNEL SCHEDULER
Version 2.6.32

9. Avinesh Kumar Multiprocessing with the Completely Fair
Scheduler . Introducing the CFS for Linux.

10. Silberschatz, A., P.B. Galvin, and G. Gagne,“CPU Scheduling,
Operating System Concepts, Sixth Ed.," John Wiley & Son, 2003.

G.Keerthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4660-4662

www.ijcsit.com 4662

